วันพุธที่ 27 มิถุนายน พ.ศ. 2555


มอเตอร์ดีซีไร้แปลงถ่าน Brushless DC Motor (BLDC)
อีซีมอเตอร์ (EC MOTOR-Electronically Commutated) เป็นมอเตอร์ไฟฟ้าที่จัดแปลงกระแสไฟฟ้าโดยระบบอิเลกโตรนิก
จัดเป็นมอเตอร์ดีซีไร้แปลงถ่าน (Brushless DC Motor-BLDC)ชนิดหนึ่ง
                      
ในระบบทำความเย็นโดยทั่วไป นิยมใช้มอเตอร์แบบเชดเด็ดโพล (SHADED POLE) หรือที่เรียกสั้นๆว่า คิวมอเตอร์
เหตุที่นิยมก็เนื่องจากมีราคาถูก เป็นมอเตอร์ไฟฟ้าที่มีประสิทธิภาพต่ำมาก
            รูปมอเตอร์แบบเชดเด็ดโพล

              อีซีมอเตอร์ที่ผลิตอยู่ในปัจจุบันมีหลายรูปแบบ เหมาะสมกับระบบเครื่องทำความเย็นที่จำเป็นต้องใช้อยู่ในจุดต่างๆ
              ข้อดีของอีซีมอเตอร์ พอกล่าวได้ดังนี้
              1. ประสิทธิภาพสูง เมื่อใช้ทดแทนมอเตอร์แบบเชดเด็ดโพล ที่ใช้กับคอนเด็นเซอร์ ประหยัดค่าไฟฟ้า คุ้มค่ากับการลงทุน
              2. อีซีมอเตอร์ บางรุ่นที่ใช้กับคอนเด็นเซอร์ จะหมุนกลับทางเมื่อคอมเพรสเซอร์หยุด ช่วยไล่ฝุ่นที่คอยล์
                  รูปแสดงเมื่อใช้ใบพัดลมขนาดต่างๆ  (กดที่นี่ เพื่อดูรายละเอียด)
              3. เมื่อใช้อีซีมอเตอร์ในชุดคอยล์เย็น ความร้อนที่เกิดจากตัวมอเตอร์ต่ำกว่า มอเตอร์แบบเชดเด็ดโพล คอมเพรสเซอร์
                  ทำงานน้อยลง ระบบโดยรวมยิ่งมีประสิทธิภาพสูงขึ้น
              4. ความเร็วรอบของ อีซีมอเตอร์ คงที่ ไม่ผันแปรตามความต่างศักย์ไฟฟ้าเหมือน มอเตอร์แบบเชดเด็ดโพล การทำงานของ
                  ระบบสารทำความเย็นจึงเสถียรกว่า
              5. อีซีมอเตอร์บางรุ่น ถูกออกแบบให้มี่ความเร็วรอบคงที่มาก ไม่เกิดเสียงรบกวนเมื่อมีการใช้งานมอเตอร์หลายตัวพร้อมๆกัน









 โครงสร้างภายในมอเตอร์ แบบมีแปรงถ่าน (Brush Motor) และไม่มีแปรงถ่าน (Brushless Motor หรือที่เรียกกันว่า HubMotor)
โครงสร้างและส่วนประกอบหลักของมอเตอร์เกียร์แบบมีแปรงถ่าน (DCMotor 24V250W)DC Motor แบบมีเกียร์ จะช่วยให้ได้แรงบิดที่สูงขึ้น ควรเลือกเกียร์ที่เป็นเหล็ก จะดีกว่าเกียร์พลาสติกโครงสร้างของ HubMotor ด้านสายออกเมื่อถอดฝาออกมา ก็จะเห็นขดลวด และแม่เหล็กติดตรงขอบดุมล้อมากมาย มีสายไฟหลัก
เข้าขดลวดทั้ง 3 ชุด
โครงสร้างของ HubMotor อีกด้านหนึ่ง เมื่อถอดฝาออกมา ก็จะเห็นเซนเซอร์สนามแม่เหล็ก (Hall Sensor) จำนวน 3 ตัววางไกล้กันตามรูป บางรุ่นก็วางห่างกัน 120 องศา
      
        อ้าว!! แล้วเราจะเลือกมอเตอร์ อย่างไรล่ะขนาดเท่าไร กี่โวล์ท กี่วัตต์ รอบ และแรงบิดเท่าไรดี ถ้านึกถึงมอเตอร์ก็ดูหลักๆ 2 อย่างครับคือ
 แรงบิด  และความเร็วรอบ กล่าวคือเค้ามีสูตรอยู่ว่า...

         กำลัง (W) = 2 x Pi x ความเร็วรอบต่อวินาที (rps) x แรงบิด (n.m)

  แรงบิด คือ แรงที่เรากระทำให้วัตถุเคลือนที่จากจุดหมุนเป็นระยะเท่าไร ยกตัวอย่างนึกถึงการขันน็อต ที่จุดหมุนจะเกิดแรงบิด และเกิดแรงกระทำที่ปลายค้ามประแจดังรูป ซึ่งระยะห่างจากจุดหมุนไปถึงแนวแรงคือระยะ r ถ้าระยะนี้ยิ่งมากแรงบิดก็จะสูงเช่นกัน กลับมาถึงล้อรถจักรยานกัน ล้อจักรยานเกิดแรงบิดที่ศูนย์กลางของล้อหรือที่ฟรีสเตอร์นั่นเอง หากล้อมีขนาดใหญ่ขึ้นก็จะต้องใช้แรงบิดสูงขึ้นตามไปด้วย แรงบิดมีหลายหน่วย ที่เรียกกัน แต่ในที่นี้ขอใช้หน่วย n.m (นิวตัน.เมตร) กล่าวคือเป็นหน่วยของแรงผลัก ของแกนหมุนใดๆ ที่ผลักวัตถุให้เคลื่อนที่ เช่น 1 n.m คือแรงผลักวัตถุหนัก 1 นิวตัน ในรัศมี 1 เมตร (1 กก. เท่ากับ 9.8 นิวตัน) สูตรของแรงบิดคือ F (แรงต้านรวม) x r (รัศมีหรือระยะจากจุดหมุน)ซึ่ง F นั้นรวมถึงน้ำหนักโหลด แรงเสียดทาน แรงต้านจากอากาศ แรงต้านจากการหมุน เยอะเยอะ งง ไปหมด ซึ่งเด่วดูได้จากสูตร ผมสรุปและทำไว้เป็นไฟล์แล้ว (อ้างอิงมากจากคนอื่นเค้าอีกที) สรุปได้ว่ามอเตอร์หากมี "แรงบิดสูง" จะช่วยให้รับภาระได้มากด้วยนั่นเอง

  ความเร็วรอบ คือ ความเร็วรอบ
มอเตอร์ส่วนใหญ่คิดเป็น รอบต่อนาที (RPM) หากไม่ทดเกียร์ข้างใน ความเร็วรอบสูงมากว่า 3,000 รอบต่อนาที ซึ่งหากทดเกียร์แล้วความเร็วก็ลดลงมาตามสัดส่วนที่ระบุ ยกตัวอย่าง หากความเร็วรอบที่มอเตอร์ 3,850 รอบต่อนาทีและมีแรงบิด 1.1 n.m อัตราส่วนทดเกียร์ 9.78 : 1 ความเร็วรอบหลังจากทดแล้วจึงเหลือ 393 รอบต่อนาที ซึ่งแรงบิดที่ปลายเฟืองก็จะสูงขึ้นเช่นกัน คือ 10.8 n.m ความเร็วและแรงบิดนี้ เราสามารถนำไปคำนวณหาความเร็วและน้ำหนักบรรทุกของรถเราได้เลย ซึ่งแล้วแต่การทดเกียร์และขนาด วงล้อของแต่ละคันด้วย..

  ส่วนเรื่องใช้กี่วัตต์นั้นหากเราได้ความเร็วและแรงบิดตามต้องการแล้วก็จะได้ขนาดกำลังวัตต์เองครับ ส่วนกี่โวลท์นั้นก็แล้วแต่ผู้ใช้ครับหาก เช่นหากเลือกได้ 350W ถ้า 36V ก็ใช้แบต 3 ลูก และกินกระแสประมาณ 9.7A แต่หากเลือก 24V ก็ใช้แบต 2 ลูก กินกระแสประมาณ 14.5A ซึ่ง หากใช้แบตขนาด Ah เท่ากัน รุ่น 24V ไฟก็จะหมดก่อนเพราะกินกระแสสูงกว่า...

ชุดควบคุม HubMotor (Brushless)
   

ภาค Driver

  IC เบอร์ MC33033 เป็นไอซีสำเร็จรูปถูกออกแบบมาเพื่อใช้งานกับมอเตอร์ไม่ใช้แปรงถ่าน (Brushless DC Motor) หรือ ที่เราเรียกกันว่า HubMotor การใช้งานหลักๆ ก็ดู DataSheet ก็จะเข้าใจดียิ่งขึ้นครับ หากกล่าวโดยสรุป
      ขา 4,5,6 เป็นขา Hall Sensor Encoder เข้า (สายเส้นเล็ก สีเหลือง เขียว และน้ำเงิน ที่ตัวมอเตอร์นั่นล่ะ)
      ขา 2,1,20 เป็นขาขับเกทชุด" บน" ของภาค Power Output
      ขา 15,16,17 เป็นขาขับเกทชุด "ล่าง" ของภาค Power Output
      ขา 9 เป็นขาต่อกับคั่นเร่ง
      ขา 14 เป็นไฟบวก 30V
      ขา 13 เป็นกราวด์
      ขา 13,18 เป็น Option (เดินหน้า/ถอยหลัง,เลือก Phase Encoder)
      ขา 19 เป็น Output Enable Active Low ต้องต่อลงกราวด์


ภาคขับ Gate Power Mosfet และ ภาค Power Output

   เนื่องจากแรงดันจากไอซี MC33033 ไม่สามารถขับเกทเพาเวอร์มอสเฟตทั้ง 6 ตัวได้ จึงต้องใช้ IC TLP250 ทำหน้าที่ขับขาเกทของเพาว์เวอร์มอสเฟท ทั้งหมดจำนวน 6 ตัวอย่างดังรูปด้านล่าง (ต้องสร้างวงจร IC TLP250 จำนวน 6 ชุดเพื่อขับเกททของเพาว์เวอร์มอสเฟท แต่ละตัวคือ Bottom Drive 3 ตัวและ Top Drive 3 ตัว  

  


รูปคลื่น Timming Diagram ของแต่ละองศาภาค Driver Gate Power Mosfet ใช้ IC Opto Couple เบอร์ TLP250
ภาค Power Output ใช้ PowerM osfet จำนวน 6 ตัวเพื่อควบคุมแต่ละเฟส
Timming Diagram รูปคลื่นของไอซี MC33033 แต่ละจุดเมื่อโรเตอร์มอเตอร์หมุนที่องศาที่แตกต่างกัน
    วงจรภาค Power Output ใช้เพาเวอร์มอสเฟท 6 ตัว (Top และ Bottom) เพื่อทำหน้าที่รับสัญญาณจากภาค Driver มาขับขดลวดของมอเตอร์ทั้ง 3 เฟส 
 
ตัวอย่างการทำงานของ HubMotor แม่เหล็ก 2 ชุดตัวอย่างการทำงานของ HubMotor แม่เหล็ก 4 ชุดภาพตัวอย่างสนามแม่เหล็กของ HubMotor ในขณะหมุน
   ตัวอย่างการทำงานของ Hubmotor แบบพื้นฐานแม่เหล็ก 2 ขั้ว คลิกที่รูป    ตัวอย่างการทำงานของ Hubmotor แบบแม่เหล็ก 4 ขั้ว คลิกที่รูป (หากมีขั้วแม่เหล็กมาก ก็จะมีขดลวดทองแดงมากเช่นกัน)  รูปจำลองสนามแม่เหล็ก ขณะมอเตอร์ทำงาน โดยความเข้มของสนามแม่เหล็กดูได้จากแถบสีมุมบนขวา

วันจันทร์ที่ 25 มิถุนายน พ.ศ. 2555

RAM


แรม (RAM)
RAM ย่อมาจากคำว่า Random-Access Memory เป็นหน่วยความจำของระบบ มีหน้าที่รับข้อมูลเพื่อส่งไปให้ CPU ประมวลผลจะต้องมีไฟเข้า Module ของ RAM ตลอดเวลา ซึ่งจะเป็น chip ที่เป็น IC ตัวเล็กๆ ถูก pack อยู่บนแผงวงจร หรือ Circuit Board เป็น moduleเทคโนโลยีของหน่วยความจำมีหลักการที่แตกแยกกันอย่างชัดเจน 2 เทคโนโลยี คือหน่วยความจำแบบ DDR หรือ Double Data Rate (DDR-SDRAM, DDR-SGRAM) ซึ่งเป็นเทคโนโลยีที่พัฒนาต่อเนื่องมาจากเทคโนโลยีของหน่วยความจำแบบ SDRAM และ SGRAM และอีกหนึ่งคือหน่วยความจำแบบ Rambus ซึ่งเป็นหน่วยความจำที่มีแนวคิดบางส่วนต่างออกไปจากแบบอื่น


SDRAM

รูปแสดง SDRAM
อาจจะกล่าวได้ว่า SDRAM (Synchronous Dynamic Random Access Memory) นั้นเป็น Memory ที่เป็นเทคโนโลยีเก่าไปเสียแล้วสำหรับยุคปัจจุบัน เพราะเป็นการทำงานในช่วง Clock ขาขึ้นเท่านั้น นั้นก็คือ ใน1 รอบสัญญาณนาฬิกา จะทำงาน 1 ครั้ง ใช้ Module แบบ SIMM หรือ Single In-line Memory Module โดยที่ Module ชนิดนี้ จะรองรับ datapath 32 bit โดยทั้งสองด้านของ circuite board จะให้สัญญาณเดียวกัน

DDR - RAM



รูปแสดง DDR - SDRAM

หน่วยความจำแบบ DDR-SDRAM นี้พัฒนามาจากหน่วยความจำแบบ SDRAM เอเอ็มดีได้ทำการพัฒนาชิปเซตเองและให้บริษัทผู้ผลิตชิปเซตรายใหญ่อย่าง VIA, SiS และ ALi เป็นผู้พัฒนาชิปเซตให้ ปัจจุบันซีพียูของเอเอ็มดีนั้นมีประสิทธิภาพโดยรวมสูงแต่ยังคงมีปัญหาเรื่องความเสถียรอยู่บ้าง แต่ต่อมาเอเอ็มดีหันมาสนใจกับชิปเซตสำหรับซีพียูมากขึ้น ขณะที่ทางเอเอ็มดีพัฒนาชิปเซตเลือกให้ชิปเซต AMD 760 สนับสนุนการทำงานร่วมกับหน่วยความจำแบบ DDR เพราะหน่วยความจำแบบ DDR นี้ จัดเป็นเทคโนโลยีเปิดที่เกิดจากการร่วมมือกันพัฒนาของบริษัทยักษ์ใหญ่อย่างเอเอ็มดี, ไมครอน, ซัมซุง, VIA, Infineon, ATi, NVIDIA รวมถึงบริษัทผู้ผลิตรายย่อยๆ อีกหลายDDR-SDRAM เป็นหน่วยความจำที่มีบทบาทสำคัญบนการ์ดแสดงผล 3 มิติ
ทางบริษัท nVidia ได้ผลิต GeForce ใช้คู่กับหน่วยความจำแบบ SDRAM แต่เกิดปัญหาคอขวดของหน่วยความจำในการส่งถ่ายข้อมูลทำให้ทาง nVidia หาเทคโนโลยีของหน่วยความจำใหม่มาทดแทนหน่วยความจำแบบ SDRAM โดยเปลี่ยนเป็นหน่วยความจำแบบ DDR-SDRAM การเปิดตัวของ GeForce ทำให้ได้พบกับ GPU ตัวแรกแล้ว และทำให้ได้รู้จักกับหน่วยความจำแบบ DDR-SDRAM เป็นครั้งแรกด้วย การที่ DDR-SDRAM สามารถเข้ามาแก้ปัญหาคอคอดของหน่วยความจำบนการ์ดแสดงผลได้ ส่งผลให้ DDR-SDRAM กลายมาเป็นมาตรฐานของหน่วยความจำที่ใช้กันบนการ์ด 3 มิติ ใช้ Module DIMM หรือ Dual In-line Memory Module โดย Module นี้เพิ่งจะกำเนิดมาไม่นานนัก มี datapath ถึง 64 bit โดยทั้งสองด้านของ circuite board จะให้สัญญาณที่ต่างกัน

Rambus

รูปแสดง Rambus

Rambus นั้นทางอินเทลเป็นผู้ที่ให้การสนับสนุนหลักมาตั้งแต่แรกแล้ว Rambus ยังมีพันธมิตรอีกเช่น คอมแพค, เอชพี, เนชันแนล เซมิคอนดักเตอร์, เอเซอร์ แลบอเรทอรีส์ ปัจจุบัน Rambus ถูกเรียกว่า RDRAM หรือ Rambus DRAM ซึ่งออกมาทั้งหมด 3 รุ่นคือ Base RDRAM, Concurrent RDRAM และ Direct RDRAM RDRAM แตกต่างไปจาก SDRAM เรื่องการออกแบบอินเทอร์-เฟซของหน่วยความจำ Rambus ใช้วิธีการจัด address การจัดเก็บและรับข้อมูลในแบบเดิม ในส่วนการปรับปรุงโอนย้ายถ่ายข้อมูล ระหว่าง RDRAM ไปยังชิปเซตให้มีประสิทธิภาพสูงขึ้น มีอัตราการส่งข้อมูลเป็น 4 เท่าของความเร็ว FSB ของตัว RAM คือ มี 4 ทิศทางในการรับส่งข้อมูล เช่น RAM มีความเร็ว BUS = 100 MHz คูณกับ 4 pipline จะเท่ากับ 400 MHz
วิธีการเพิ่มประสิทธิภาพในการขนถ่ายข้อมูลของ RDRAM นั้นก็คือ จะใช้อินเทอร์เฟซเล็ก ๆ ที่เรียกว่า Rambus Interface ซึ่งจะมีอยู่ที่ปลายทางทั้ง 2 ด้าน คือทั้งในตัวชิป RDRAM เอง และในตัวควบคุมหน่วยความจำ (Memory controller อยู่ในชิปเซต) เป็นตัวช่วยเพิ่มแบนด์วิดธ์ให้ โดย Rambus Interface นี้จะทำให้ RDRAM สามารถขนถ่ายข้อมูลได้สูงถึง 400 MHz DDR หรือ 800 เมกะเฮิรตซ์ เลยทีเดียว
แต่การที่มีความสามารถในการขนถ่ายข้อมูลสูง ก็เป็นผลร้ายเหมือนกัน เพราะทำให้มีความจำเป็นต้องมี Data path หรือทางผ่านข้อมูลมากขึ้นกว่าเดิม เพื่อรองรับปริมาณการขนถ่ายข้อมูลที่เพิ่มขึ้น ซึ่งนั่นก็ส่งผลให้ขนาดของ die บนตัวหน่วยความจำต้องกว้างขึ้น และก็ทำให้ต้นทุนของหน่วยความจำแบบ Rambus นี้ สูงขึ้นและแม้ว่า RDRAM จะมีการทำงานที่ 800 เมกะเฮิรตซ์ แต่เนื่องจากโครงสร้างของมันจะเป็นแบบ 16 บิต (2 ไบต์) ทำให้แบนด์วิดธ์ของหน่วยความจำชนิดนี้ มีค่าสูงสุดอยู่ที่ 1.6 กิกะไบต์ต่อวินาทีเท่านั้น (2 x 800 = 1600) ซึ่งก็เทียบเท่ากับ PC1600 ของหน่วยความจำแบบ DDR-SDRAM

สัญญาณนาฬิกา 

DDR-SDRAM จะมีพื้นฐานเหมือนกับ SDRAM ทั่วไปมีความถี่ของสัญญาณนาฬิกาเท่าเดิม (100 และ 133 เมกะเฮิรตซ์) เพียงแต่ว่า หน่วยความจำแบบ DDR นั้น จะสามารถขนถ่ายข้อมูลได้มากกว่าเดิมเป็น 2 เท่า เนื่องจากมันสามารถขนถ่ายข้อมูลได้ทั้งในขาขึ้นและขาลงของหนึ่งรอบสัญญาณนาฬิกา ในขณะที่หน่วยความจำแบบ SDRAM สามารถขนถ่ายข้อมูลได้เพียงขาขึ้นของรอบสัญญาณนาฬิกาเท่านั้น
ด้วยแนวคิดง่าย ๆ แต่สามารถเพิ่มแบนด์วิดธ์ได้เป็นสองเท่า และอาจจะได้พบกับหน่วยความจำแบบ DDR II ซึ่งก็จะเพิ่มแบนด์วิดธ์ขึ้นไปอีก 2 เท่า จากหน่วยความจำแบบ DDR (หรือเพิ่มแบนด์วิดธ์ไปอีก 4 เท่า เมื่อเทียบกับหน่วยความจำแบบ SDRAM) ซึ่งก็มีความเป็นไปได้สูง เพราะจะว่าไปแล้วก็คล้ายกับกรณีของ AGP ซึ่งพัฒนามาเป็น AGP 2X 4X และ AGP 8X
หน่วยความจำแบบ DDR จะใช้ไฟเพียง 2.5 โวลต์ แทนที่จะเป็น 3.3 โวลต์เหมือนกับ SDRAM ทำให้เหมาะที่จะใช้กับโน้ตบุ๊ก และด้วยการที่พัฒนามาจากพื้นฐานเดียว DDR-SDRAM จะมีความแตกต่างจาก SDRAM อย่างเห็นได้ชัดอยู่หลายจุด เริ่มตั้งแต่มีขาทั้งหมด 184 pin ในขณะที่ SDRAM จะมี 168 pin อีกทั้ง DDR-SDRAM ยังมีรูระหว่าง pin เพียงรูเดียว ในขณะที่ SDRAM จะมี 2 รู ซึ่งนั่นก็เท่ากับว่า DDR-SDRAM นั้น ไม่สามารถใส่ใน DIMM ของ SDRAM ได้ หรือต้องมี DIMM เฉพาะใช้ร่วมกันไม่ได้

การเรียกชื่อ RAM 

Rambus ซึ่งใช้เรียกชื่อรุ่นหน่วยความจำของตัวเองว่า PC600, PC700 และ ทำให้ DDR-SDRAM เปลี่ยนวิธีการเรียกชื่อหน่วยความจำไปเช่นกัน คือแทนที่จะเรียกตามความถี่ของหน่วยความจำว่าเป็น PC200 (PC100 DDR) หรือ PC266 (PC133 DDR) กลับเปลี่ยนเป็น PC1600 และ PC2100 ซึ่งชื่อนี้ก็มีที่มาจากอัตราการขนถ่ายข้อมูลสูงสุดที่หน่วยความจำรุ่นนั้นสามารถทำได้ ถ้าจะเปรียบเทียบกับหน่วยความจำแบบ SDRAM แล้ว PC1600 ก็คือ PC100 MHz DDR และ PC2100 ก็คือ PC133 MHz DDR เพราะหน่วยความจำที่มีบัส 64 บิต หรือ 8 ไบต์ และมีอัตราการขนถ่ายข้อมูล 1600 เมกะไบต์ต่อวินาที ก็จะต้องมีความถี่อยู่ที่ 200 เมกะเฮิรตซ์ (8 x 200 = 1600) หรือถ้ามีแบนด์วิดธ์ที่ 2100 เมกะไบต์ต่อวินาที ก็ต้องมีความถี่อยู่ที่ 266 เมกะเฮิรตซ์ (8 x 266 = 2100)

อนาคตของ RAM 

บริษัทผู้ผลิตชิปเซตส่วนใหญ่เริ่มหันมาให้ความสนใจกับหน่วยความจำแบบ DDR กันมากขึ้น อย่างเช่น VIA ซึ่งเป็นบริษัทผู้ผลิตชิปเซตรายใหญ่ของโลกจากไต้หวัน ก็เริ่มผลิตชิปเซตอย่าง VIA Apollo KT266 และ VIA Apollo KT133a ซึ่งเป็นชิปเซตสำหรับซีพียูในตระกูลแอธลอน และดูรอน (Socket A) รวมถึงกำหนดให้ VIA Apolle Pro 266 ซึ่งเป็นชิปเซตสำหรับเซลเลอรอน และเพนเทียม (Slot1, Socket 370) หันมาสนับสนุนการทำงานร่วมกับหน่วยความจำแบบ DDR-SDRAM แทนที่จะเป็น RDRAM

แนวโน้มที่น่าจะเป็นไปได้มากที่สุดของทั้ง DDR II กับ RDRAM เวอร์ชันต่อไป เทคโนโลยี quard pump คือการอัดรอบเพิ่มเข้าไปเป็น 4 เท่า เหมือนกับในกรณีของ AGP ซึ่งนั่นจะทำให้ DDR II และ RDRAM เวอร์ชันต่อไป มีแบนด์-วิดธ์ที่สูงขึ้นกว่างปัจจุบันอีก 2 เท่า ในส่วนของ RDRAM นั้น การเพิ่มจำนวนสล็อตในหนึ่ง channel ก็น่าจะเป็นหนทางการพัฒนาที่อาจเกิดขึ้น ซึ่งนั่นก็จะเป็นการเพิ่มแบนด์วิดธ์ของหน่วยความจำขึ้นอีกเป็นเท่าตัวเช่นกัน และทั้งหมดที่ว่ามานั้น คงจะพอรับประกันได้ว่า การต่อสู้ระหว่าง DDR และ Rambus คงยังไม่จบลงง่าย ๆ และหน่วยความจำแบบ DDR ยังไม่ได้เป็นผู้ชนะอย่างเด็ดขาด


ข้อมูลจาก www.dcomputer.com